counter

記事一覧

初等幾何学は大学受験においても、とっても大事!

おはようございます。
八千代緑が丘校の轟です。

長年、高校生に数学の質問対応をしている中で、
多くの高校生が初等幾何が苦手であることを
感じています。

高校では数学Aで「図形の性質」を学びますが、
初等幾何の根幹は中学生の頃に学ぶと思います。

例えば、補助線を引いて相似な図形を見つける
などは、中学生の頃に学習しますよね。

ただ、中学生の頃に学んだ相似などの初等幾何を
忘れてしまっている高校生たち、もったいない…。

初等幾何の知識を使いこなせば、
図形問題(ベクトルなど)を解きやすくなる
問題は沢山あります。

その良い一例は、早稲田大学 理工系学部で
2021年に出題された第5問です。

問題はこちら↓
ファイル 4848-1.png

問題文だけだとイメージしづらいと思いますので、
図を描くと↓となります。
ファイル 4848-2.png

(1)が解ければ、(2)は瞬殺問題となります。
この問題は(1)を解けるかが鍵です。

高校受験で、立体図形の問題を解く際、
切り口を考えて解きませんでしたか?

本問においても、切り口を書いて初等幾何的に
解くと、ほぼ、中学数学の知識で解くことが
できます。

ファイル 4848-3.png

つまり、今回、何をお伝えしたいかというと、
それだけ、大学入試においても中学生で学んだ
初等幾何の理解は大切であるということです。

もし、このブログを中学生や、中学生の親御さんが
見て下さっていたら、是非、中学生のうちに、
初等幾何を定着させると良いでしょう。

また、今、新高校1年生で、高校に入学することを
待ちわびている方で、「図形問題、苦手なんだよな~」
と思っている方は、この春休み中に、中学数学の
図形の分野を復習しておくと良いと思います。


また、初等幾何学と言えば、お薦めの参考書は
こちら↓です。

ファイル 4848-4.png

タイトル:わかる幾何学
著者  :秋山 武太郎
出版社 :日新出版

相当古い本ではありますが、
現代でも、この本から良い学びを得ることが
できます。

ファイル 4848-5.jpg

では、今日も皆さん、良い学びとなりますように~♪

(八千代緑が丘校 轟)

=======================
新年度特別招待講習受付中!詳細・お申し込みはこちら!
<新高3、高2、高1>
https://www.jasmec.co.jp/toshin/event/shotaikoshu/

一日体験の詳細・お申し込みはこちら!
https://www.jasmec.co.jp/toshin/event/taiken/

★Instagramやってます★
フォローお願いします👇
https://www.instagram.com/honshin_premium/

<八千代緑が丘校 校舎紹介ページ>
http://www.jasmec.co.jp/koushaguide/pym.htm

YouTubeはこちらから👇
https://youtu.be/KOoM-l4YrOE
=======================